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Resul ts  a re  repor ted  of an experimental  study of the three-dimensional  s t ruc ture  of nonsta- 
t ionary gas outflow f rom a planar  nozzle. Outflow of a heated shock wave in a nitrogen tube at 
different moments  of t ime f rom the s ta r t  of outflow (0-1 reset)  in two mutually perpendicular  
direct ions is considered. A scheme for  recons t ruc t ing  the flow at different outflow stages is 
proposed.  The dimensions of the Riemann wave a re  found to oscillate.  

Je ts  flowing out of an ax i symmet r i ca l  nozzle have been studied in many experimental  and computational 
works.  Papers  dealing with planar jets a re  significantly fewer in number.  Studies of planar flows undertaken 
by a number of authors  [1-3] have revealed a number  of features of outflow f rom a planar nozzle contrast ing 
with that f rom an ax i symmet r i ca l  nozzle.  In par t icular ,  a general ized equation was obtained for determining 
the distance to the Mach disk in an ax i symmet r ica l  jet or  Riemann wave (analog of the Mach disk) in a planar 
jet [3]. This equation ref lects  the exper imental ly  established fact that the distance h in planar outlfow is in- 
dependent of the adiabatic index T, whereas  h ~ Tv~"for an ax isymmetr ica l  jet. 

Data in published works on the numerical  and experimental  study of three-dimensional  jets are  few and 
far  between. This is due not only to an increase  in the dimensionali ty of the problem, but also to the occur -  
rence  of complex sur faces  of discontinuity in the flow. However, in teres t  in the charac te r i s t i c s  of th ree-  
dimensional jets has grown in connection with their  expanded use in a i r c ra f t  flight control  d iagrams,  fluidics, 
etc. 

Jets  flowing out of elliptical and near ly  rec tangular  nozzles were calculated numerical ly  in [4]. The ca l -  
culated flow had a ra ther  complex spatial s t ructure .  

One author [5] who considered the formation of flow from a s ta t ionary supersonic  gas source within the 
f ramework of the theory of an ideal liquid noted that reg imes  are  possible in which a secondary shock wave 
t ravels  downstream from its s ta t ionary position and only subsequently re turns  to it. 

Nonstat ionary flow s t ruc ture  has been experimental ly  studied [6, 7] for outflow from a planar nozzle. 
The jets were considered relat ive to the direct ion of the major  axis of the nozzle, and consequently t r ans fo r -  
mation of the jets in the plane of the ma jo r  axis of the nozzle was not studied. 

The cu r ren t  work was ca r r i ed  out using a shock tube measur ing  40 x 40 mm 2 in c ross  section with a low- 
p r e s s u r e  chamber  4.0 m in length. The flow pattern was visualized by an IAB-451 shadow-indication ins t ru-  
ment. A planar sonic nozzle with thickness b= 1.5 mm and length a =40 ram, through which shock-wave heated 
gas flowed into an altitude chamber  400 x 400 x 600 mm in volume, was mounted at the end of the shock tube. 
The pressure -equa l iza t ion  chamber  was filled with nitrogen to 27 mm Hg, and nitrogen was also used 
as the drive gas. A tube regime was selected in which the Mach number of the incident wave M 1 =3. 

Under these conditions the result ing ~core" of shock-wave heated gas will flow into the altitude chamber 
within about 5 msec .  But it is impossible to consider  the re tardat ion pa ramete r s  to be constant over the same 
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per iod  of t ime.  The e a r l i e s t  d i s tu rbance  of the s ta te  of the gas  a t  the end of the shock tube is  induced by 
a wave resu l t ing  f rom the in terac t ion  of the contact  su r face  and the re f lec ted  shock wave. 

The a r r i v a l  t ime  of this d is turbance  a t  the end of the shock tube can be calcula ted using H. Mirels ,  
t heo rem.  

The total  working t ime at  the end of the tube amounts  to 500 p s e c ,  as  calcula ted for  our conditions 
using prev ious  [8] r e su l t s .  The c r i t i ca l  c r o s s - s e c t i o n a l  a r e a  of the nozzle is 4% of the tube end face,  a l -  
lowing us to cons ider  the gas p a r a m e t e r s  a t  the end face constant  during the working t ime.  Total p r e s s u r e  
and t e m p e r a t u r e  a t  the end face a r e  P0 = 1400 m m  Hg and To= 1300~ respec t ive ly ,  for  these opera t ing con-  
ditions of the shock tube. 

Two s e r i e s  of expe r imen t s  were  c a r r i e d  out to study the nonsta t ionary  s t ruc tu re  of a t h r e e - d i m e n -  
sional jet.  In the f i r s t  s e r i e s ,  the m a j o r  axis  of the nozzle  was mounted para l l e l  to the optical  axis  of the 
shadow-indicat ion ins t rument  (Fig. la) ,  while in the second s e r i e s  it was perpendicu la r  to it  (Fig. lb).  

The synchronizat ion  s y s t e m  al lowed the p r o c e s s  to be photographed a t  d i f ferent  but pa i rwise  equal 
momen t s  of t ime f rom the s t a r t  of outflow. This  made it poss ib le  to cons t ruc t  a spat ia l  model of jet  out- 
flow f rom a p lanar  nozzle  for  d i f ferent  m om en t s  of t ime.  

I t  should be noted that  definite diff icul t ies  m a y  a r i s e  in analyzing the Toep le r  pa t t e rns  of t h r e e - d i -  
mens iona l  flow, s ince a single photograph m a y  depict  both the ba r re l  shocks and the project ion of the r e -  
gions within which the ba r r e l  shocks in te rac t  on a given plane. 

F igure  2a depicts  the scheme  of the initial  je t  sect ion cons idered  along the m a j o r  axis  of the nozzle,  
while Fig. 2b depicts  the scheme  along the mino r  axis  of  the nozzle.  The digits in both projec t ions  denote 
the boundar ies  of the je t  (1}, a cyl indr ical  b a r r e l  shock (2), Riemann wave (3), r e f l ec ted  shocks  (4), sl iding 
su r face  (5), and project ion of the region of in teract ion (7) of ba r r e l  shocks v is ib le  in Fig. 2a with spatial  
ba r r e l  shock (6) on the plane of the m a j o r  axis .  

Le t  us cons ider  a s chema t i c  r ep re sen t a t i on  of the initial jet  segment  along the minor  axis  of the noz-  
zle (Fig. 2b). Three  reg ions  a r e  depicted in the scheme:  

Region I, the pro jec t ion  on the yx-p laue  of the su r face  of the cyl indr ica l  b a r r e l  shock, whose t ra i l  on 
the zx-p lane  is AB and DC. 

Region II, the project ion of the Riemaun  wave BC on the yx-plane .  

Region HI, the projec t ion  of the ba r r e l  shocks bounding the jet  f rom the side,  i .e . ,  in the •  direction.  

I t  should be noted that  unlike the b a r r e l  shocks  AB or  DC, whose su r face  is cyl indrical ,  the su r face  
of the la te ra l  ba r r e l  shocks  is a compl ica ted  th ree -d imens iona l  sur face .  Cylindrical  segments  a l so  fo rm 
on it as  the ra t io  a~ b d e c r e a s e s ,  both pro jec t ions  of the jet  subsequently becoming qual i ta t ively s imi l a r .  

The influence of r a r e f ac t ion  waves  d isrupt ing the je t  is man i fes ted  m o r e  rapidly  along the y axis 
than a longthe  z axis as the o v e r p r e s s u r e  p a r a m e t e r  n = pa/p ~r i n c r e a s e s .  This leads to the width d2 of the Rie -  
mann  wave d e c r e a s i n g  wi th  ine reas ing  n, given the s ame  outflow phase,  and the dis tance f rom it  to the noz-  
zle sect ion (h) increas ing .  

Le t  us e s t ima te  the degree  of expansion of the jet  in the di rect ion of the y and z axes  under  our out- 
flow condit ions,  based  on a m e a s u r e m e n t  of the max ima l  d imensions  of the ba r r e l  shocks in the c o r r e -  
sponding planes.  It is evident that  a jet  in the d i rec t ion of the y axis  expands insignif icantly and that  the 
max ima l  dimension of the m a j o r  axis  in the plane is  nea r  the nozzle section.  

If we cons ide r  the co r respond ing  cr i t ica l  nozzle  d imensions  as  the cha r ac t e r i s t i c  dimension in the 
zx-  and yx -p fanes ,  we find that  D2/a =1.2 when 12/a =0.21, whereas  D~ /b=29  and l l / b = 2 7 .  Such behavior  
of the jet  can be explained by analyzing the in terac t ion  of r a re fac t ion  waves  a r i s ing  as  the nozzle edges 
a r e  s t r eaml ined .  When a~ b = 27, r a r e f a c t i o n  waves  fo rmed  as the long nozzle edges a r e  s t r eaml ined  r e -  
duce the p r e s s u r e  m o r e  rap id ly  in a neighborhood of the in te rsec t ion  of the jet  boundary with the plane of 
the m a j o r  ax is  than in a co r respond ing  in te rsec t ion  with the plane of the mino r  axis .  

A dependence was cons t ruc ted  as a r e su l t  of p r o c e s s i n g  a la rge  s e r i e s  of Toep le r  d i ag rams  for  the 
width d 2 of  the Riemann wave on outflow t ime  (Fig. 3). The curve was cons t ruc ted  with d imens ion less  co-  
ordinates  t = T C c r / r c r  , d 2 = r c r  , where  Ccr is the speed of sound in the c r i t i ca l  sect ion and r c r = b / 2 .  
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Thus the spatial wave structure of flow at different outflow stages was reproduced, based on an experi- 

mental study of a nenstationary jet outflowing from a planar nozzle. Our scheme for reconstructing the flow 
also allows us to construct the wave structure of the gas-driven jet segment for stationary outflow based on 
published experimental data. The resulting nonstationary wave structure is transformed in space and time to 
a model of stationary outflow from a computationally obtained rectangular nozzle. The dimensions of the Rie- 

mann wave are established as a result of an oscillatory process. 
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TYPES OF WAVE STRUCTURE IN THE INTERACTION 

OF A CONVERGENT JET WITH AN INFINITE 

TWO-DIMENSIONAL OBSTRUCTION 
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and V. N. Uskov 

UDC 532.525.2 : 533.6.011.72 

Poss ib le  types of wave s t ruc ture  formed in the f i rs t  rol l  of a convergent  supersonic jet as it 
interacts  with an infinite two-dimensional  object are  indicated in this work based on a gener-  
alization of resul ts  f rom theoretical  and experimental  studies. The influence of the Math  num- 
ber,  over  p re s su re  pa rame te r  n, isentropic exponent k, and the location h of the obstacle on the wave 
s t ruc ture  is considered.  

w The interaction of jet effiux into a vacuum (n = ~} f rom an infinite two-dimensional obstacle [1, 2] 
beyond the point of ref lect ion f rom the f i rs t  charac te r i s t i c  axis AB (BD is the reflection character is t ic)  of a 
rarefac t ion  fan (Fig. 1) has been studied chiefly theoretically.  

It has been indicated [1] that the influence of flow i r regu la r i ty  at  a nozzle exit is substantial only in di- 
r ec t  proximity to it and does not a l ter  the qualitative flow pattern.  A shock wave concave with respec t  to the 
nozzle is formed in front of the obstacle (central shock wave). Two types of flow distinguished by the con- 
figuration of the Mach line are  possible behind the shock [1]. 
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